Search results for "Iteratively reweighted least squares"
showing 3 items of 3 documents
Algorithms for rational discrete least squares approximation
1975
In this paper an algorithm for the computation of a locally optimal polefree solution to the discrete rational least squares problem under a mild regularity condition is presented. It is based on an adaptation of projection methods [8], [12], [13], [14], [18], [19] to the modified Gaus-Newton method [4], [10]. A special device makes possible the direct handling of the infinitely many linear constraints present in this problem.
A generalization of the orthogonal regression technique for life cycle inventory
2012
Life cycle assessment (LCA) is a method used to quantify the environmental impacts of a product, process, or service across its whole life cycle. One of the problems occurring when the system at hand involves processes delivering more than one valuable output is the apportionment of resource consumption and environmental burdens in the correct proportion amongst the products. The mathematical formulation of the problem is represented by the solution of an over-determined system of linear equations. The paper describes the application of an iterative algorithm for the implementation of least square regression to solve this over-determined system directly in its rectangular form. The applied …
Iteratively reweighted least squares in crystal structure refinements
2011
The use of robust techniques in crystal structure multipole refinements of small molecules as an alternative to the commonly adopted weighted least squares is presented and discussed. As is well known, the main disadvantage of least-squares fitting is its sensitivity to outliers. The elimination from the data set of the most aberrant reflections (due to both experimental errors and incompleteness of the model) is an effective practice that could yield satisfactory results, but it is often complicated in the presence of a great number of bad data points, whose one-by-one elimination could become unattainable. This problem can be circumvented by means of a robust least-squares regression that…